Swift kick from a supernova could knock a black hole askew

Gravitational waves are providing new hints about how black holes get their kicks.

The Advanced Laser Interferometer Gravitational-Wave Observatory’s detection of spacetime ripples from two merging black holes on December 26, 2015, indicated that one black hole was spinning like a tilted top as it orbited with its companion (SN: 7/9/16, p. 8). That off-kilter spin could mean that the stellar explosion that produced the black hole gave it a strong kick, physicist Richard O’Shaughnessy and colleagues report in a paper in press in Physical Review Letters.

Scientists aren’t sure how black holes like those detected by LIGO pair up (SN Online: 6/19/16). Two neighboring stars may have obliterated themselves in a pair of explosions called supernovas, producing two black holes. But that scenario should lead to black holes that spin in the same plane as their orbit. It would take a sizeable jolt from the supernova, of about 50 kilometers per second, to account for the cockeyed spin, the researchers conclude.

Computer simulations of supernovas predict smaller black hole boosts, making for a cosmological conundrum. “This will be a serious challenge for supernova modelers to explain,” O’Shaughnessy, of the Rochester Institute of Technology in New York, said June 5 in a news conference in Austin, Texas, at a meeting of the American Astronomical Society.

Ancient DNA shakes up the elephant family tree

Fossil DNA may be rewriting the history of elephant evolution.

The first genetic analysis of DNA from fossils of straight-tusked elephants reveals that the extinct animals most closely resembled modern African forest elephants. This suggests that straight-tusked elephants were part of the African, not Asian, elephant lineage, scientists report online June 6 in eLife.

Straight-tusked elephants roamed Europe and Asia until about 30,000 years ago. Much like modern Asian elephants, they sported high foreheads and double-domed skulls. These features convinced scientists for decades that straight-tusked and Asian elephants were sister species, says Adrian Lister, a paleobiologist at the Natural History Museum in London who was not involved in the study.
For the new study, researchers extracted and decoded DNA from the bones of four straight-tusked elephants found in Germany. The fossils ranged from around 120,000 to 240,000 years old. The genetic material in most fossils more than 100,000 years old is too decayed to analyze. But the elephant fossils were unearthed in a lake basin and a quarry, where the bones would have been quickly covered with sediment that preserved them, says study author Michael Hofreiter of the University of Potsdam in Germany.

Hofreiter’s team compared the ancient animals’ DNA with the genomes of the three living elephant species — Asian, African savanna and African forest — and found that straight-tusked genetics were most similar to African forest elephants.

When the researchers told elephant experts what they’d found, “Everybody was like, ‘This can’t possibly be true!’” says study coauthor Beth Shapiro of the University of California, Santa Cruz. “Then it gradually became, ‘Oh yeah, I see.… The way we’ve been thinking about this is wrong.’”

If straight-tusked elephants were closely related to African forest elephants, then the African lineage wasn’t confined to Africa — where all elephant species originated — as paleontologists previously thought. It also raises questions about why straight-tusked elephants bore so little resemblance to today’s African elephants, which have low foreheads and single-domed skulls.
Accounting for this new finding may not be as simple as moving one branch on the elephant family tree, Lister says. It’s possible that straight-tusked elephants really were a sister species of Asian elephants, but they exhibit genetic similarities to African forest elephants from interbreeding before the straight-tusked species left Africa.

It’s also possible that a common ancestor of Asian, African and straight-tusked elephants had particular genetic traits that were, for some reason, only retained by African and straight-tusked elephants, he says.

Lister and colleagues are now reexamining data on straight-tusked skeletons to reconcile the species’ skeletal features with the new information on their DNA. “I will feel most comfortable if we can understand these genetic relationships in terms of the [physical] differences between all these species,” he says. “Then we’ll have a complete story.”

When should babies sleep in their own rooms?

When we brought our first baby home from the hospital, our pediatrician advised us to have her sleep in our room. We put our tiny new roommate in a crib near our bed (though other containers that were flat, firm and free of blankets, pillows or stuffed animals would have worked, too).

The advice aims to reduce the risk of sleep-related deaths, including sudden infant death syndrome, or SIDS. Studies suggest that in their first year of life, babies who bunk with their parents (but not in the same bed) are less likely to die from SIDS than babies who sleep in their own room. The reasons aren’t clear, but scientists suspect it has to do with lighter sleep: Babies who sleep near parents might more readily wake themselves up and avoid the deep sleep that’s a risk factor for SIDS.

That’s an important reason to keep babies close. Room sharing also makes sense from a logistical standpoint. Middle of the night feedings and diaper changes are easier when there’s less distance between you and the babe.

But babies get older. They start snoring a little louder and eating less frequently, and it’s quite natural to wonder how long this room sharing should last. That’s a question without a great answer. In November 2016, the American Academy of Pediatrics task force on SIDS updated its sleep guidelines. The earlier recommendation was that babies ought to sleep in parents’ bedrooms for an entire year. The new suggestion softens that a bit to say infants should be there for “ideally for the first year of life, but at least for the first 6 months.”

Rachel Moon, a SIDS expert at the University of Virginia in Charlottesville who helped write the revised AAP guidelines, says that the update “gives parents a little more latitude after the first 6 months.” The vast majority of SIDS deaths happen in the first six months of life, but the studies that have found benefits for room sharing lumped together data from the entire first year. That makes it hard to say how protective room sharing is for babies between 6 and 12 months of age.

But a new study raises a reason why babies ought to get evicted before their first birthday: They may get more sleep at night in their own rooms. Babies who were sleeping in their own rooms at ages 4 or 9 months got more nighttime sleep than babies the same ages who roomed with parents, researchers reported online June 5 in Pediatrics.

The team asked hundreds of mothers to take sleep surveys when their children were 4, 9, 12 and 30 months old. Some of the 230 children slept in their own rooms when they were younger than 4 months, others moved to their own rooms between 4 and 9 months, and the rest were still sharing their parents’ rooms at 9 months.
At 9 months, babies who had been sleeping alone since 4 months of age slept an average of 40 minutes more than room sharers. The researchers found no differences in sleep duration between the groups of babies at age 12 months. By 30 months of age, though, children who had been sleeping in their own rooms by either 4 or 9 months of age slept on average 45 minutes longer at night than children who had been sharing their parents’ rooms at 9 months. (Important caveat: At 30 months, total daily sleep time didn’t differ between the groups. The former room sharers were making up for missed nighttime sleep with naps.)

Parents who want their babies age 6 months and older to sleep in their own room ought to be encouraged to make the move, says study coauthor Ian Paul, a pediatrician at Penn State. “The guidelines should reflect data, not opinion,” Paul says.

He suspects that sharing a bedroom with babies interferes with everyone’s sleep because normal nocturnal rustlings turn into full-blown wake-ups. Babies and adults alike experience brief arousals during sleep. But when parents are right next to babies, they’re more likely to respond to their children’s brief arousals, which then wakes the baby up more. “This then sets up the expectation from the baby that these arousals will be met with a parent reaction, causing a bad cycle to develop,” he says.

There was another difference that turned up between the two groups of babies. Babies who roomed with parents were four times more likely to be moved into their parents’ beds at some point during the night than babies who slept in their own rooms. Bed sharing is a big risk factor for sleep-related infant deaths.

But Moon cautions that the Pediatrics study is preliminary, and doesn’t warrant a change in the AAP guidelines. She and coauthors point out in an accompanying commentary that other factors might be behind the difference in sleep between the two groups of babies. For instance, babies who slept in their own room were more likely to have consistent bedtime routines, be put to bed drowsy but awake, and have bedtimes of 8 p.m. or earlier. Those are all signs of good “sleep hygiene” for babies, and might be contributing to the longer sleep times. “We know that consistent bedtime routine and consistent bedtime are very important in terms of sleep quality in children,” Moon says. “They could very well make a difference.”

So that’s where we are. Some things are clear, like putting your baby to sleep on her back on a flat, firm surface clear of objects and having your baby nearby during the first six months. But other decisions come with skimpier science, and whether to evict your 6-month-old is one of them. Because science can take you only so far, it may just come down to the snoring, stirring and sleep deprivation.

The southern drawl gets deconstructed

BOSTON — Some aspects of speech are as Southern as pecan pie. Consider the vowel shift that makes the word pie sound more like “pah.” While that pronunciation is found from Florida to Texas, a new study reveals a surprising diversity in Southern vowel pronunciation that’s linked to a speaker’s age, social class, gender, race and geography.

The research, presented June 29 at a meeting of the Acoustical Society of America, could help software developers create better speech recognition tools for smartphones and other devices.
To understand the medley of southern vowel sounds, linguist Margaret Renwick of the University of Georgia in Athens dove into the Digital Archive of Southern Speech. The archive comprises almost 400 hours of interviews with 64 native Southerners representing a mix of ethnicities, social classes, education levels and ages.

Renwick’s analysis of more than 300,000 vowel sounds finds, for example, that Southern upper middle class women are often at the extreme end of variation in pronunciation. While Southern men and women are equally likely to shift the vowel in bet to “bay-ut,” upper middle class Southern women are more likely to stretch the vowel sound in bit to “bee-ut.” They are also most likely to pronounce bait as bite. The finding that women are more inclined to draw a sound out into two syllables — or change it entirely — is in line with other research suggesting that women are linguistic innovators, and less likely to adhere to the norms of standard American English, Renwick said.

Slug slime inspires a new type of surgical glue

For a glue that holds up inside the body, turn to the humble slug, Arion subfuscus. A new super-sticky material mimics slug slime’s ability to stick on slick wet surfaces and could lead to more effective medical adhesives.

The material has two parts: a sticky layer that attaches to a surface, and a shock-absorbing layer that reduces strain. That makes the adhesive less likely to snap off.

Researchers tested the material as a surgical adhesive in a number of different scenarios: It stuck to pig skin and liver. It latched on to a beating pig’s heart, even when the surface was coated in blood. It sealed up a heart defect, preventing liquid from leaking even when the organ was inflated and deflated tens of thousands of times. And it was less toxic in the body than a commonly used commercialized tissue adhesive, researchers report July 28 in Science.

The researchers hope the material could someday be used in surgical procedures in place of invasive sutures and staples.

Gene editing of human embryos gets rid of a mutation that causes heart failure

For the first time in the United States, researchers have used gene editing to repair a mutation in human embryos.

Molecular scissors known as CRISPR/Cas9 corrected a gene defect that can lead to heart failure. The gene editor fixed the mutation in about 72 percent of tested embryos, researchers report August 2 in Nature. That repair rate is much higher than expected. Work with skin cells reprogrammed to mimic embryos had suggested the mutation would be repaired in fewer than 30 percent of cells.
In addition, the researchers discovered a technical advance that may limit the production of patchwork embryos that aren’t fully edited. That’s important if CRISPR/Cas9 will ever be used to prevent genetic diseases, says study coauthor Shoukhrat Mitalipov, a reproductive and developmental biologist at Oregon Health & Science University in Portland. If even one cell in an early embryo is unedited, “that’s going to screw up the whole process,” says Mitalipov. He worked with colleagues in Oregon, California, Korea and China to develop the embryo-editing methods.

Researchers in other countries have edited human embryos to learn more about early human development or to answer other basic research questions (SN: 4/15/17, p. 16). But Mitalipov and colleagues explicitly conducted the experiments to improve the safety and efficiency of gene editing for eventual clinical trials, which would involve implanting edited embryos into women’s uteruses to establish pregnancy.
In the United States, such clinical trials are effectively banned by a rule that prevents the Food and Drug Administration from reviewing applications for any procedure that would introduce heritable changes in human embryos. Such tinkering with embryo DNA, called germline editing, is controversial because of fears that the technology will be used to create so-called designer babies.

“This paper is not announcing the dawn of the designer baby era,” says R. Alta Charo, a lawyer and bioethicist at the University of Wisconsin Law School in Madison. The researchers have not attempted to add any new genes or change traits, only to correct a disease-causing version of a gene.

In the study, sperm from a man who carries a mutation in the MYBPC3 gene was injected into eggs from women with healthy copies of that gene. Carrying just one mutant copy of the gene causes an inherited heart problem called hypertrophic cardiomyopathy (SN: 9/17/16, p. 8). That condition, which strikes about one in every 500 people worldwide, can cause sudden heart failure. Mutations in the MYBPC3 gene are responsible for about 40 percent of cases. Doctors can treat symptoms of the condition, but there is no cure.

Along with the man’s sperm, researchers injected into the egg the DNA-cutting enzyme Cas9 and a piece of RNA to direct the enzyme to snip the mutant copy of the gene. Another piece of DNA was also injected into the egg. That hunk of DNA was supposed to be a template that the fertilized egg could use to repair the breach made by Cas9. Instead, embryos used the mother’s healthy copy of the gene to repair the cut.

Embryos’ self-healing DNA came as a surprise, because gene editing in other types of cells usually requires an external template, Mitalipov says. The discovery could mean that it will be difficult for researchers to fix mutations in embryos if neither parent has a healthy copy of the gene. But the finding could be good news for those concerned about designer babies, because embryos may reject attempts to add new traits.

Timing the addition of CRISPR/Cas9 is important, the researchers also discovered. In their first experiments, the team added the gene editor a day after fertilizing the eggs. Of 54 injected embryos, 13 were patchwork, or mosaic, embryos with some repaired and some unrepaired cells. Such mosaic embryos probably arise when the fertilized egg copies its DNA before researchers add Cas9, Mitalipov says.

Injecting Cas9 along with the sperm — before an egg had a chance to replicate its DNA — produced only one patchwork embryo. That embryo had repaired the mutation in all its cells, but some cells used the mother’s DNA for repair while others used the template supplied by the researchers.

None of the tested embryos showed any signs that Cas9 was cutting where it shouldn’t be. “Off-target” cutting has been a safety concern with the gene editor because of the possibility of creating new DNA errors.

The study makes progress toward using gene editing to prevent genetic diseases, but there’s still has a long way to go before clinical testing can begin, says Janet Rossant, a developmental biologist at the Hospital for Sick Children and the University of Toronto. “We need to be sure this can be done reproducibly and effectively.”

Neutrinos seen scattering off an atom’s nucleus for the first time

Famously sneaky particles have been caught behaving in a new way.

For the first time, scientists have detected neutrinos scattering off the nucleus of an atom. The process, predicted more than four decades ago, provides a new way to test fundamental physics. It will also help scientists to better characterize the neutrino, a misfit particle that has a tiny mass and interacts so feebly with matter that it can easily sail through the entire Earth.
The detection, reported online August 3 in Science, “has really big implications,” says physicist Janet Conrad of MIT, who was not involved with the research. It fills in a missing piece of the standard model, the theory that explains how particles behave: The model predicts that neutrinos interact with nuclei. And, says Conrad, the discovery “opens up a whole new area of measurements” to further test the standard model’s predictions.

Scientists typically spot neutrinos when they interact with a single proton or neutron. But the new study measures “coherent” scattering, in which a low-energy neutrino interacts with an entire atomic nucleus at once, ricocheting away and causing the nucleus to recoil slightly in response.

“It’s exciting to measure it for the first time,” says physicist Kate Scholberg of Duke University, spokesperson for the collaboration — named COHERENT — that made the new finding.

In the past, neutrino hunters have built enormous detectors to boost their chances of catching a glimpse of the particles — a necessity because the aloof particles interact so rarely. While still rare, coherent neutrino scattering occurs more often than previously detected types of neutrino interactions. That means detectors can be smaller and still catch enough interactions to detect the process. COHERENT’s detector, a crystal of cesium and iodine, weighs only about 15 kilograms. “It’s the first handheld neutrino detector; you can just carry it around,” says physicist Juan Collar of the University of Chicago.

Collar, Scholberg and colleagues installed their detector at the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee. The facility generates bursts of neutrons and, as a by-product, produces neutrinos at energies that COHERENT’s detector can spot. When a nucleus in the crystal recoils due to a scattering neutrino, a flash of light appears and is captured by a light sensor. The signal of the recoiling nucleus is incredibly subtle — like detecting the motion of a bowling ball when hit by a ping-pong ball — which is why the effect remained undetected until now.
The amount of scattering the researchers saw agreed with the standard model. But such tests are still in their early stages, says physicist Leo Stodolsky of the Max Planck Institute for Physics in Munich, who was not involved with the research. “We’re looking forward to more detailed studies to see if it really is accurately in agreement with the expectations.” Physicists hope to find a place where the standard model breaks down, which could reveal new secrets of the universe. More precise tests may reveal discrepancies, he says. “That would be extremely interesting.”

Measuring coherent neutrino scattering could help scientists understand the processes that occur within exploding stars, or supernovas, which emit huge numbers of neutrinos (SN: 02/18/17, p. 24). The process could be used to detect supernovas as well — if a supernova explodes nearby, scientists could spot its neutrinos scattering off nuclei in their detectors.

Similar scattering might also help scientists detect dark matter, an invisible source of mass that pervades the universe. Dark matter particles could scatter off atomic nuclei just as neutrinos do, causing a recoil. The study indicates that such recoils are detectable — good news since several dark matter experiments are currently attempting to measure recoils of nuclei (SN: 11/12/16, p. 14). But it also suggests a looming problem: As dark matter detectors become more sensitive, neutrinos bouncing off the nuclei will swamp any signs of dark matter.

Coherent neutrino scattering detectors could lead to practical applications as well: Small-scale neutrino detectors could eventually detect neutrinos produced in nuclear reactors to monitor for attempts to develop nuclear weapons, for example.

Physicist Daniel Freedman of MIT, who predicted in 1974 that neutrinos would scatter off nuclei, is pleased that his prediction has finally been confirmed. “It’s a thrill.”

Why midsize animals are the fastest

Speed has its limits — on the open road and the Serengeti. Midsize animals tend to be the speedsters, even though, in theory, the biggest animals should be the fastest. A new analysis that relates speed and body size in 474 species shows that the pattern holds for animals whether they run, fly or swim (see graphs below) and suggests how size becomes a liability.

This relationship between speed and size has long stumped scientists. Big animals have longer legs or flippers to get from point A to point B. And bigger bodies have higher metabolic rates and more fast-twitch muscle cells, needed to convert chemical energy into mechanical energy and rapidly accelerate. So, why aren’t wildebeests faster than cheetahs?
The make-or-break factor is the time it takes an animal to accelerate to its top theoretical speed, an upper limit based on mass and metabolic rate, researchers report July 17 in Nature Ecology & Evolution. Fast-twitch muscle cells provide the power for acceleration but tire quickly. When an animal gets too big, it takes too long to accelerate, and these cells use up their energy before hitting top speeds. More modestly built critters need less time to accelerate to those speeds.

The researchers gathered speed and size data from past lab and field studies. The animals (some shown as icons in the slideshow below) ranged in mass from 30-microgram Spanish mites to a blue whale weighing 108 metric tons.

Polluted water: It’s where sea snakes wear black

Maybe it’s more than reptile fashion. The high percentage of citified sea snakes wearing black might be a sign that pollution is an evolutionary force.

Off the coasts of Australia and New Caledonia, some turtle-headed sea snakes (Emydocephalus annulatus) sport pale bands on their dark skins. Others go all black. In 15 places surveyed, the all-black form was more likely to predominate in waters near cities, military sites or industrial zones than along reefs near less built-up coastlines, says evolutionary ecologist Rick Shine of the University of Sydney.
That trend plus some analysis of trace elements in snakes’ skin suggests that the abundant dark forms could turn out to be an example of industrial melanism, Shine and his colleagues propose August 10 in Current Biology.

The most famous example of this evolutionary phenomenon comes from a dark form of peppered moth that overtook pale populations in 19th century England (SN: 6/25/16, p. 6). Dark wings created better camouflage from hungry birds in the grimy industrializing landscape.
Shine doesn’t think the sea snakes are going for camouflage, though. Instead, the snakes could be more like the dark-feathered pigeons of Paris. The melanin that gives that city’s feral birds their urban chic also does a great job of binding traces of toxic metals such as zinc, explains evolutionary ecologist Marion Chatelain of the University of Warsaw. When birds molt, getting rid of darker feathers lets them unload more of the unhealthful urban pollutants, she and colleagues have reported.
This could explain why marine biologist and study coauthor Claire Goiran has so many dark turtle-headed sea snakes in a lagoon not far from her campus, the University of New Caledonia in Nouméa. Earlier studies had found only downsides to dark coloration: Seaweed spores preferentially settle on dark snakes and sprout fuzz that can cut swimming speed by 20 percent and cause a snake to shed its skin more often than normal.
To test a scenario of industrial melanism, or darkening due to pollution, the researchers collected data on skin colors for a total of about 1,450 snakes, both live and museum specimens, from 15 sites in New Caledonia and Australia. Higher percentages of all-dark snakes wriggled around the nine polluted sites surveyed. At one, a remote Australian reef that the military had long used as a bombing range, all 13 specimens were dark.

To test shed skins for trace metals, Goiran and Shine enlisted Paco Bustamante of the University of La Rochelle in France, who studies trace metal contamination in marine life.

Researchers managed to collect sloughed skins from 17 turtle-headed snakes, which inconveniently shed their skin underwater. To compare light and dark patches, the scientists turned to two local species of sea kraits, which have banded skin and visit land to shed it.
Overall, skins held concentrations of trace elements higher than those that can cause health problems in birds and mammals, the researchers report. In the krait skins, dark zones had slightly more of some contaminants, such as zinc and arsenic, than the pale bluish-white bands did.

The idea that polluted water favors melanized sea snakes “is a reasonable hypothesis based on what we know,” Chatelain says. Definitive tests will require more data and different approaches. Genetic testing, for example, would clarify whether dark populations arose instead from small groups of pioneers that happened to have a lot of black snakes.

That testing could be a long way off. Sea snakes are evolutionary cousins of cobras and mambas, and some of the species swimming around Australia and New Caledonia are “bowel-looseningly large,” Shine says. At least the little turtle-headed ones, which eat eggs of small reef fishes, have venom glands that have atrophied and “probably couldn’t fit a human finger in their mouths.” But until someone figures out how to keep them alive in captivity for more than a few days, Shine isn’t expecting definitive genetics.

Some secrets of China’s terra-cotta army are baked in the clay

China’s first emperor broke the mold when he had himself buried with a terra-cotta army. Now insight into the careful crafting of those soldiers is coming from the clays used to build them. Custom clay pastes were mixed at a clay-making center and then distributed to specialized workshops that cranked out thousands of the life-size figures, new research suggests.

Roughly 700,000 craftsmen and laborers built Emperor Qin Shihuang’s palatial mausoleum in east-central China between 247 B.C. and 210 B.C. A portion of those workers gathered clay from nearby deposits and prepared it in at least three forms, researchers propose in the August Antiquity. On-site or nearby workshops used different signature clay recipes for terra-cotta warriors, parts of mostly bronze waterfowl figures and paving bricks for pits in which the soldiers originally stood.
Around 7,000 ceramic foot soldiers, generals and horses — equipped with a variety of bronze weapons — make up the army, which was accidentally discovered in 1974 by farmers digging a well. The emperor would have regarded the ceramic statues as a magic army that would protect him as he ruled in the afterlife, many researchers suspect.

Building and assembling the multitude was an enormous task. Workers poured clay mixtures into casts of torsos, limbs and other body parts, and then assembled the bodies, taking care to create different facial features for each soldier. Finished statues, now mostly gray, were covered in colored lacquers and likely fired in kilns. Most figures were placed inside one giant pit. Earthen walls formed 11 parallel corridors where statues stood in battle-ready rows.

Still, no workshops or debris firmly linked to the statue-making process have been found. As a result, the number, size, location and organization of workshops involved in producing the emperor’s ceramic troops remain uncertain.

Archaeologist Patrick Quinn of University College London and three Chinese colleagues studied the composition of clay samples from the site. The pieces were taken from 12 terra-cotta warriors, two acrobat statues found in a second pit, five clay bricks from the floor of the largest pit, clay fragments from inside three bronze waterfowl statues found in a third pit and part of an earthen wall in the acrobat pit.

Microscopic analysis of the samples revealed that the clay came from deposits near the tomb’s location, the scientists say. But the recipes for different parts varied. Paving bricks contained only a mixture of dark and light clays, while the clay used for warriors and acrobats had sand worked in. Sand and plant fragments were folded into a clay mixture that formed the core of the bronze waterfowl.
Sand may have made the clay more malleable for shaping into ornate figures and increased statues’ durability, the researchers speculate. Plant pieces may have helped reduce the weight of birds’ clay cores. A clay-processing site at or just outside the emperor’s mausoleum must have doled out the appropriate clay pastes to an array of workshops where potters made statues, bricks or other objects, the scientists propose.

What’s more, many statue and waterfowl samples show signs of having been slowly heated in kilns at maximum temperatures of no more than 750˚ Celsius. That’s lower by 150˚ C or more than some previous estimates, the investigators say. Fires set in an attack on the tomb after the emperor’s death may have refired some of the clay, accounting for the temperature discrepancy, the researchers say.

“I’m not at all surprised by the new findings,” says East Asian art historian Robin D.S. Yates of McGill University in Montreal. Legal and administrative documents previously found at two other Qin Empire sites describe workshops that specialized in various types of craft production, Yates says.

In some cases, artisans’ stamps and inscriptions on terra-cotta warriors match those on excavated roof tiles from Emperor Qin’s mausoleum. The markings suggest that some workshops made several types of ceramic objects, says East Asian art historian Lothar Ledderose of Heidelberg University in Germany. Inscriptions on statues also indicate that artisans working at off-site factories during the Qin Empire collaborated with potters at local workshops to produce the terra-cotta army, Ledderose says.