How science has fed stereotypes about women

Early in Inferior, science writer Angela Saini recalls a man cornering her after a signing for her book Geek Nation, on science in India. “Where are all the women scientists?” he asked, then answered his own question. “Women just aren’t as good at science as men are. They’ve been shown to be less intelligent.”

Saini fought back with a few statistics on girls’ math abilities, but soon decided that nothing she could say would convince him. It’s a situation that may feel familiar to many women. “What I wish I had was a set of scientific arguments in my armory,” she writes.
So she decided to learn the truth about what science really does tell us about differences between the sexes. “For everyone who has faced the same situation,” she writes, “the same desperate attempt to not lose control but have at hand some real facts and a history to explain them, here they are.”

In Inferior, Saini marshals plenty of facts and statistics contradicting sexist notions about women’s bodies and minds. She cites study after study showing little or no difference in male and female capabilities.

But it’s the book’s historical perspective that makes it most compelling. Only by understanding the cultural context of the men whose studies and ideas first pointed to gender imbalances can we see how deeply biases run, Saini argues.

Charles Darwin’s influential ideas reflected his times, for instance. In The Descent of Man, he wrote that “man has ultimately become superior to woman” via evolution. To a woman active in her local women’s movement, Darwin wrote, “there seems to me to be a great difficulty from the laws of inheritance … in [women] becoming the intellectual equals of man.”

If that idea sounds absurd now, don’t fool yourself into thinking it has vanished. Saini’s book is full of examples right up to today of scientists who have started from this and other flawed premises, which have led to generations of flawed studies and results that reinforce stereotypes. But the tide has been turning, as more women have entered science and more scientists of both sexes seek to remove bias from their work.
Saini does an excellent job of dissecting research on evolution, neuroscience and even the long-standing notion that women’s sexual behavior is driven by their interest in stable, monogamous relationships. By the end, it’s clear that science doesn’t divide men and women; we’ve done that to ourselves. And as scientists become more rigorous, we get closer to seeing ourselves as we really are.

Minuscule jitters may hint at quantum collapse mechanism

A tiny, shimmying cantilever wiggles a bit more than expected in a new experiment. The excess jiggling of the miniature, diving board–like structure might hint at why the strange rules of quantum mechanics don’t apply in the familiar, “classical” world. But that potential hint is still a long shot: Other sources of vibration are yet to be fully ruled out, so more experiments are needed.

Quantum particles can occupy more than one place at the same time, a condition known as a superposition (SN: 11/20/10, p. 15). Only once a particle’s position is measured does its location become definite. In quantum terminology, the particle’s wave function, which characterizes the spreading of the particle, collapses to a single location (SN Online: 5/26/14).
In contrast, larger objects are always found in one place. “We never see a table or chair in a quantum superposition,” says theoretical physicist Angelo Bassi of the University of Trieste in Italy, a coauthor of the study, to appear in Physical Review Letters. But standard quantum mechanics doesn’t fully explain why large objects don’t exist in superpositions, or how and why wave functions collapse.

Extensions to standard quantum theory can alleviate these conundrums by assuming that wave functions collapse spontaneously, at random intervals. For larger objects, that collapse happens more quickly, meaning that on human scales objects don’t show up in two places at once.

Now, scientists have tested one such theory by looking for one of its predictions: a minuscule jitter, or “noise,” imparted by the random nature of wave function collapse. The scientists looked for this jitter in a miniature cantilever, half a millimeter long. After cooling the cantilever and isolating it to reduce external sources of vibration, the researchers found that an unexplained trembling still remained.

In 2007, physicist Stephen Adler of the Institute for Advanced Study in Princeton, N.J., predicted that the level of jitter from wave function collapse would be large enough to spot in experiments like this one. The new measurement is consistent with Adler’s prediction. “That’s the interesting fact, that the noise matches these predictions,” says study coauthor Andrea Vinante, formerly of the Institute for Photonics and Nanotechnologies in Trento, Italy. But, he says, he wouldn’t bet on the source being wave function collapse. “It is much more likely that it’s some not very well understood effect in the experiment.” In future experiments, the scientists plan to change the design of the cantilever to attempt to isolate the vibration’s source.

The result follows similar tests performed with the LISA Pathfinder spacecraft, which was built as a test-bed for gravitational wave detection techniques. Two different studies found no excess jiggling of free-falling weights within the spacecraft. But the new cantilever experiment tests for wave function collapse occurring at different rate and length scales than those previous studies.
Theories that include spontaneous wave function collapse are not yet accepted by most physicists. But interest in them has recently become more widespread, says physicist David Vitali of the University of Camerino in Italy, “sparked by the fact that technological advances now make fundamental tests of quantum mechanics much easier to conceive.” Focusing on a simple system like the cantilever is the right approach, says Vitali, who was not involved with the research. Still, “a lot of things can go wrong or can be not fully controlled.”

To conclude that wave function collapse is the cause of the excess vibrations, every other possible source will have to be ruled out. So, Adler says, “it’s going to take a lot of confirmation to check that this is a real effect.”

Air pollution takes a toll on solar energy

Air pollution is a drag for renewable energy. Dust and other sky-darkening air pollutants slash solar energy production by 17 to 25 percent across parts of India, China and the Arabian Peninsula, a new study estimates. The haze can block sunlight from reaching solar panels. And if the particles land on a panel’s flat surface, they cut down on the area exposed to the sun. Dust can come from natural sources, but the other pollutants have human-made origins, including cars, factories and coal-fired power plants.

Scientists collected and analyzed dust and pollution particles from solar panels in India, then extrapolated to quantify the impact on solar energy output in all three locations. China, which generates more solar energy than any other country, is losing up to 11 gigawatts of power capacity due to air pollution, the researchers report in the Aug. 8 Environmental Science & Technology Letters. That’s a loss of about $10 billion per year in U.S. energy costs, says study coauthor Mike Bergin of Duke University. Regular cleaning of solar panels can help. Cleaning the air, however, is harder.

These transparent fish turn rainbow with white light. Now, we know why

The ghost catfish transforms from glassy to glam when white light passes through its mostly transparent body. Now, scientists know why.

The fish’s iridescence comes from light bending as it travels through microscopic striped structures in the animal’s muscles, researchers report March 13 in the Proceedings of the National Academy of Sciences.

Many fishes with iridescent flair have tiny crystals in their skin or scales that reflect light (SN: 4/6/21). But the ghost catfish (Kryptopterus vitreolus) and other transparent aquatic species, like eel larvae and icefishes, lack such structures to explain their luster.

The ghost catfish’s see-through body caught the eye of physicist Qibin Zhao when he was in an aquarium store. The roughly 5-centimeter-long freshwater fish is a popular ornamental species. “I was standing in front of the tank and staring at the fish,” says Zhao, of Shanghai Jiao Tong University. “And then I saw the iridescence.”

To investigate the fish’s colorful properties, Zhao and colleagues first examined the fish under different lighting conditions. The researchers determined its iridescence arose from light passing through the fish rather than reflecting off it. By using a white light laser to illuminate the animal’s muscles and skin separately, the team found that the muscles generated the multicolored sheen.
The researchers then characterized the muscles’ properties by analyzing how X-rays scatter when traveling through the tissue and by looking at it with an electron microscope. The team identified sarcomeres — regularly spaced, banded structures, each roughly 2 micrometers long, that run along the length of muscle fibers — as the source of the iridescence.

The sarcomeres’ repeating bands, comprised of proteins that overlap by varying amounts, bend white light in a way that separates and enhances its different wavelengths. The collective diffraction of light produces an array of colors. When the fish contracts and relaxes its muscles to swim, the sarcomeres slightly change in length, causing a shifting rainbow effect.
The purpose of the ghost catfish’s iridescence is a little unclear, says Heok Hee Ng, an independent ichthyologist in Singapore who was not involved in the new study. Ghost catfish live in murky water and seldom rely on sight, he says. But the iridescence might help them visually coordinate movements when traveling in schools, or it could help them blend in with shimmering water to hide from land predators, like some birds, he adds.

Regardless of function, Ng is excited to see scientists exploring the ghost catfish’s unusual characteristics.

“Fishes actually have quite a number of these interesting structures that serve them in many ways,” he says. “And a lot of these structures are very poorly studied.”

Ancient DNA suggests people settled South America in at least 3 waves

DNA from a 9,000-year-old baby tooth from Alaska, the oldest natural mummy in North America and remains of ancient Brazilians is helping researchers trace the steps of ancient people as they settled the Americas. Two new studies give a more detailed and complicated picture of the peopling of the Americas than ever before presented.

People from North America moved into South America in at least three migration waves, researchers report online November 8 in Cell. The first migrants, who reached South America by at least 11,000 years ago, were genetically related to a 12,600-year-old toddler from Montana known as Anzick-1 (SN: 3/22/14, p. 6). The child’s skeleton was found with artifacts from the Clovis people, who researchers used to think were the first people in the Americas, although that idea has fallen out of favor. Scientists also previously thought these were the only ancient migrants to South America.
But DNA analysis of samples from 49 ancient people suggests a second wave of settlers replaced the Clovis group in South America about 9,000 years ago. And a third group related to ancient people from California’s Channel Islands spread over the Central Andes about 4,200 years ago, geneticist Nathan Nakatsuka of Harvard University and colleagues found.
People who settled the Americas were also much more genetically diverse than previously thought. At least one group of ancient Brazilians shared DNA with modern indigenous Australians, a different group of researchers reports online November 8 in Science.
Early Americans moved into prehistoric South America in at least three migratory waves, a study proposes. Ancestral people who crossed from Siberia into Alaska first gave rise to groups that settled North America (gray arrows). The first wave of North Americans (blue) were related to Clovis people, represented by a 12,600-year-old toddler from Montana called Anzick-1. They moved into South America at least 11,000 years ago, followed by a second wave (green) whose descendants contributed most of the indigenous ancestry among South Americans today. A third migration wave (yellow) from a group that lived near California’s Channel Island moved into the Central Andes about 4,200 years ago. Dotted areas indicate that people there today still have that genetic ancestry.
Genetically related, but distinct groups of people came into the Americas and spread quickly and unevenly across the continents, says Eske Willerslev, a geneticist at the Natural History Museum of Denmark in Copenhagen and a coauthor of the Science study. “People were spreading like a fire across the landscape and very quickly adapted to the different environments they were encountering.”

Both studies offer details that help fill out an oversimplified narrative of the prehistoric Americas, says Jennifer Raff, an anthropological geneticist at the University of Kansas in Lawrence who was not involved in the work. “We’re learning some interesting, surprising things,” she says.

For instance, Willerslev’s group did detailed DNA analysis of 15 ancient Americans different from those analyzed by Nakatsuka and colleagues. A tooth from Trail Creek in Alaska was from a baby related to a group called the ancient Beringians, who occupied the temporary land mass between Alaska and Siberia called Beringia. Sometimes called the Bering land bridge, the land mass was above water before the glaciers receded at the end of the last ice age. The ancient Beringians stayed on the land bridge and were genetically distinct from the people who later gave rise to Native Americans, Willerslev and colleagues found.

The link between Australia and ancient Amazonians also hints that several genetically distinct groups may have come across Beringia into the Americas.

The Australian signature was first found in modern-day indigenous South Americans by Pontus Skoglund and colleagues (SN: 8/22/15, p. 6). No one was sure why indigenous Australians and South Americans shared DNA since the groups didn’t have any recent contact. One possibility, says Skoglund, a geneticist at the Francis Crick Institute in London and a coauthor of the Cell paper, was that the signature was very old and inherited from long-lost ancestors of both groups.

So Skoglund, Nakatsuka and colleagues tested DNA from a group of ancient Brazilians, but didn’t find the signature. Willerslev’s group, however, examined DNA from 10,400-year-old remains from Lagoa Santa, Brazil, and found the signature, supporting the idea that modern people could have inherited it from much older groups. And Skoglund is thrilled. “It’s amazing to see it confirmed,” he says.

How that genetic signature got to Brazil in the first place is still a mystery, though. Researchers don’t think early Australians paddled across the Pacific Ocean to South America. “None of us really think there was some sort of Pacific migration going on here,” Skoglund says.

That leaves an overland route through Beringia. There’s only one problem: Researchers didn’t find the Australian signature in any of the ancient remains tested from North or Central America. And no modern-day indigenous North or Central Americans tested have the signature either.

Still, Raff thinks it likely that an ancestral group of people from Asia split off into two groups, with one heading to Australia and the other crossing the land bridge into the Americas. The group that entered the Americas didn’t leave living descendants in the north. Or, because not many ancient remains have been studied, it’s possible that scientists have just missed finding evidence of this particular migration.

If Raff is right, that could mean that multiple groups of genetically distinct people made the Berigian crossing, or that one group crossed but was far more genetically diverse than researchers have realized.

The studies may also finally help lay to rest a persistent idea that some ancient remains in the Americas are not related to Native Americans today.

The Lagoa Santans from Brazil and a 10,700-year-old mummy from a place called Spirit Cave in Nevada had been grouped as “Paleoamericans” because they both had narrow skulls with low faces and protruding jaw lines, different from other Native American skull shapes. Some researchers have suggested that Paleoamericans — including the so-called Kennewick Man, whose 8,500-year-old remains were found in the state of Washington (SN: 12/26/15, p. 30) — weren’t Native Americans, but a separate group that didn’t have modern descendants.

But previous studies of Paleoamericans and Willerslev’s analysis of the Spirit Cave mummy’s DNA provide evidence that, despite their skull shapes, the Paleoamericans were not different from other Native Americans of their time. And the ancient people are more closely related to present-day Native Americans than any other group.

Willerslev presented the results about the Spirit Cave mummy to the Fallon Paiute-Shoshone tribe when the data became available. Based on the genetic results, the tribe was able to claim the mummy as an ancestor and rebury the remains.

Do you know how your drinking water is treated?

Disinfection of public drinking water is one of the great public health success stories of the 20th century. In 1900, outbreaks of cholera and typhoid, both caused by waterborne bacteria, were common in American cities. In 1908, Jersey City, N.J., became the first U.S. city to routinely disinfect community water. Other cities and towns quickly followed, and by 1920, the typhoid rate in the United States had dropped by 66 percent.

But that battle isn’t over. Around the world, more than 2 billion people lack reliable access to safe water (SN: 8/18/18, p. 14), and half a million people die each year from diarrhea caused by contaminated water, according to the World Health Organization.
And in the United States, challenges remain. The management failures that caused the 2014 lead contamination crisis in Flint, Mich., were a wake-up call (SN: 3/19/16, p. 8), but Flint is hardly alone. Systems in other big cities are also falling short. In October, officials in Newark, N.J., scrambled to hand out home water filters after it became clear that efforts to prevent lead from leaching into drinking water were not getting the job done. In the first six months of 2017, more than 22 percent of water samples in that city exceeded federal limits for lead, according to news reports.

If big cities are struggling, small towns with skimpy budgets as well as the many people who get their water from private wells often have it harder, lacking access to the infrastructure or technology to make water reliably safe. But science can help.

In this issue, Science News staff writer Laurel Hamers digs into the latest research on water treatment technology and finds a focus on efforts to invent affordable, scalable solutions. There’s a lot of engineering and chemistry involved, not surprisingly, and also physics — it’s hard to move water efficiently through a filter while also catching the bad stuff. Her story is a testament to researcher ingenuity, and a helpful primer on how a typical municipal water treatment plant works.

As I read Hamers’ story, I realized that I didn’t know how our water is treated here in Washington, D.C., even though I live barely a mile from one of the city’s two treatment plants. (I at least get credit for knowing the water comes from the Potomac River.) So I Googled it and found a description of how that process works. Plus I found data on potential contaminants such as Giardia and Cryptosporidium, as well as information on how residents can get their water tested for lead, which can leach from pipes or fixtures.
I also learned that each spring, the Washington Aqueduct briefly switches disinfectants from chloramine to chlorine while the agency cleans the water pipes. That might explain the short-lived swimming pool smell in the tap water.

For me, this became a double win; I learned a lot about advances in water treatment technology from Hamers’ reporting, and I was motivated to seek out information about my local water supply.

If other readers feel inspired by our work to learn more, count me as a happy journalist.

A satellite screw-up reaffirms Einstein’s theory of gravity

An orbital oopsie has led to new proof of Albert Einstein’s physics prowess.

In 2014, two satellites intended for Europe’s Galileo network, the equivalent of the United States’ GPS network, were placed into orbit incorrectly, causing them to travel around Earth in ellipses rather than circles. That wasn’t ideal for the satellites’ originally intended navigational use, but scientists realized the wayward satellites were perfect for another purpose: testing Einstein’s theory of gravity, the general theory of relativity.

According to general relativity, gravity affects not just space, but also time. The deeper within a gravitational field you are, the slower time passes (SN: 10/17/15, p. 16). So a clock at a higher altitude will tick faster than one closer to Earth’s surface, where Earth’s gravity is stronger. The satellites’ orbital mishap allowed the most precise test yet of this effect, known as gravitational redshift, two teams of scientists report in a pair of papers in the Dec. 7 Physical Review Letters.

As the two misplaced satellites move in their elliptical orbits, their distance from Earth periodically increases and decreases by about 8,500 kilometers. Using the precise atomic clocks on the satellites, the scientists studied how that altitude change affected the flow of time. The clocks sped up and slowed down by tiny fractions of a second as expected, agreeing with the predictions of general relativity within a few thousandths of a percent, the teams report.

A second repeating fast radio burst has been tracked to a distant galaxy

SEATTLE — Astronomers have spotted a second repeating fast radio burst, and it looks a lot like the first. The existence of a second repeating burst suggests there could be many more of the mysterious signals in the cosmos.

The burst, called FRB 180814.J0422+73, is one of 13 newly discovered fast radio bursts, or FRBs — brief, bright signals of radio energy that come from distant galaxies. The FRBs were detected over a few weeks last year by the Canadian Hydrogen Intensity Mapping Experiment, or CHIME, in British Columbia. Astronomers reported the discoveries at a meeting of the American Astronomical Society on January 7 and in the Jan. 9 Nature.
Most such bursts erupt once, last for a few milliseconds, and are never seen again. So astronomers have puzzled over what causes them for years (SN: 8/9/14, p. 22).

“If you have something that flashes for a millisecond in the sky, and there’s nothing that happens for many years, it’s really hard to study,” says astronomer Shriharsh Tendulkar of McGill University in Montreal, a member of the CHIME team.

But then in 2016, astronomers discovered the first repeating FRB when they realized that a series of bursts all came from a single source, called FRB 121102 (SN: 4/2/16, p. 12). Astronomers tracked the signal to its host galaxy (SN: 2/4/17, p. 10) and determined it was coming from an extremely magnetic environment, such as the region surrounding a black hole (SN: 2/3/18, p. 6). Researchers didn’t know if FRB 121102’s repeating signal was unique. Of the more than 60 FRBs detected, no other was known to repeat — until now. Having spotted a second one, scientists are searching for more.

“Imagine you saw a unicorn,” Tendulkar says. “Then suddenly you discover another one. You know now there is a population of these. There is hope for discovering a lot more.”
The CHIME team detected the first of the repeating FRB signals on August 14, with four more coming over the next two months from the same spot on the sky. It wasn’t until the third burst, on September 17, that the team realized they might have a repeater, Tendulkar says.

“Somebody pointed out, hey look, these three bursts seem to have the same properties,” he says. “Everybody got really excited.”

Calculations show that the new repeater is about 1.6 billion light-years away. The CHIME team also saw an odd similarity between the two known repeating bursts. Most FRBs are just a sharp blip, akin to a single note being played on a trumpet. But some of the individual bursts in both repeaters were made up of multiple sub-bursts that descended in frequency, like the “wah wah wah wah” of a sad trombone.

“We’ve seen this in 121102, and we can’t explain it,” says astronomer Emily Petroff of ASTRON, the Netherlands Institute of Radio Astronomy, who was not involved in the new work. “Up until now we’ve only had the one repeater, and it’s given us more questions than answers.” But the fact that both repeaters behave similarly could suggest they have similar origins, she says.

Astronomers may have already caught a third repeating burst, too. FRB 110523, discovered in 2015, has some similar features to the first known repeating FRB, so it was worth checking to see if it also repeats, said astronomer Allison McCarthy of the University of Alabama in Tuscaloosa.

Together with Andrew Seymour of the Green Bank Observatory in West Virginia, McCarthy analyzed more than 41 hours of observations of FRB 110523 taken at the Arecibo Observatory in Puerto Rico. They found one potential repeat burst, McCarthy reported January 9 in a poster at the AAS meeting, but they’re not declaring victory just yet. “It wasn’t strong enough for us to be very sure we had detected one,” McCarthy said, adding that they’re about 60 percent certain. “But it’s still a promising candidate.”

Astronomers’ theories for what causes FRBs are almost as numerous as known FRBs themselves. At one point, astronomers even considered the idea that FRBs could be signals from intelligent aliens. But it’s unclear if the repeating bursts and single bursts both come from the same kinds of sources, or even if one-offs might also repeat if watched for long enough.

“It’s the wild, wild west out there,” Tendulkar says. “We have tantalizing clues, but it’s hard to make definitive conclusions.”

CHIME is likely to catch a lot more of these fast radio bursts. The telescope was still being tested when it caught the 13 new ones, so was not operating at peak performance. “They just barely turned on the telescope,” Petroff says, “and they’re already finding things.”

Epileptic seizures may scramble memories during sleep

SAN FRANCISCO — Seizures during sleep can scramble memories — a preliminary finding that may help explain why people with epilepsy sometimes have trouble remembering.

The sleeping brain normally rehashes newly learned material, a nocturnal rehearsal that strengthens those memories. Neuroscientist Jessica Creery and her colleagues forced this rehearsal by playing certain sounds while nine people with epilepsy learned where on a screen certain pictures of common objects were located. Then, while the subjects later slept, the researchers played the sounds to call up some of the associated memories.

This sneaky method of strengthening memories, called targeted memory reactivation, worked as expected for five people who didn’t have seizures during the process. When these people woke up, they remembered the picture locations reactivated by a tone better than those that weren’t reactivated during sleep, said Creery, of Northwestern University in Evanston, Ill. She presented the research March 25 at the annual meeting of the Cognitive Neuroscience Society.

The opposite was true, however, for four people who had mild seizures, detected only by electrodes implanted deep in the brain, while they slept. For these people, memory reactivation during sleep actually worsened memories, making the reactivated memories weaker than the memories that weren’t reactivated during sleep. The combination of seizures and memory reactivation “seems like it’s actually scrambling the memory,” Creery says, a finding that suggests that seizures somehow accelerate forgetting.

Antarctica’s iceberg graveyard could reveal the ice sheet’s future

Just beyond the tip of the Antarctic Peninsula lies an iceberg graveyard.

There, in the Scotia Sea, many of the icebergs escaping from Antarctica begin to melt, depositing sediment from the continent that had been trapped in the ice onto the seafloor. Now, a team of researchers has embarked on a two-month expedition to excavate the deposited debris, hoping to discover secrets from the southernmost continent’s climatic past.

That hitchhiking sediment, the researchers say, can help piece together how Antarctica’s vast ice sheet has waxed and waned over millennia. And knowing how much the ice melted in some of those warmest periods, such as the Pliocene Epoch about 3 million years ago, may provide clues to the ice sheet’s future. That includes how quickly the ice may melt in today’s warming world and by how much, says paleoclimatologist Michael Weber of the University of Bonn in Germany.
Weber and Maureen Raymo, a paleoclimatologist at Lamont-Doherty Earth Observatory in Palisades, N.Y., are leading the expedition, which set sail on March 25.

“By looking at material carried by icebergs that calved off of the continent, we should be able to infer which sectors of the ice sheet were most unstable in the past,” Raymo says. “We can correlate the age and mineralogy of the ice-rafted debris to the bedrock in the section of Antarctica from which the bergs originated.”
Icebergs breaking off from the edges of Antarctica’s ice sheet tend to stay close to the continent, floating counterclockwise around the continent. But when the bergs reach the Weddell Sea, on the eastern side of the peninsula, they are shunted northward through a region known as Iceberg Alley toward warmer waters in the Scotia Sea.

Because so many icebergs from all around the continent converge in one region, it is the ideal place to collect sediment cores and take stock of the debris that the bergs have dropped over millions of years.

“That area in the Scotia Sea is so exciting, because it’s a focus point between South America and the Antarctic Peninsula where the currents flow through, and there are a lot of icebergs,” says Gerhard Kuhn, a marine geologist at the Alfred Wegener Institute in Bremerhaven, Germany. “You get a picture of more or less [all of] Antarctica in that area,” says Kuhn, who has studied the region but is not aboard the current cruise.
The expedition, known as leg 382 of the International Ocean Discovery Program, plans to drill at six different sites in the Scotia Sea. At three sites, the team plans to penetrate about 600 meters into the seafloor. “That would likely bring us back to the mid-Miocene, which could translate into 12 million to 18 million years back in time,” Weber says.

At another site, the team plans to drill even deeper, 900 meters, to go further back in time, in hopes of finding sediments that date to the opening of the Drake Passage about 41 million years ago. That passage, a body of water that now lies between South America and Antarctica, opened a link between the Atlantic and Pacific oceans and may have played a role in building up Antarctica’s ice sheets at different times in its history.

A graveyard turned crystal ball
How much a melting Antarctica might have contributed to global sea-level rise following the last great ice age, which ended about 19,000 years ago, has been a subject of debate. Seas rose by about 130 meters from 19,000 to 8,000 years ago, Weber says, and much of the melting happened in the northern hemisphere.

But Antarctica may have played a larger role than once thought. In a study published in Nature in 2014, Kuhn, Weber and other colleagues reported that ice-rafted debris from that time period, as recorded in relatively short sediment cores from Iceberg Alley, often occurred in large pulses lasting a few centuries to millennia. Those data suggested that the southernmost continent was shedding lots of bergs much more quickly during those times than once thought.

Now, the researchers want to see even further into the past, to understand how quickly Antarctica’s ice sheet might have melted during even warmer periods, and how much it may have contributed to episodes of past sea-level rise.

The new drilling expedition targets several periods when the climate is thought to have warmed dramatically. One is a warm period in the middle Pliocene about 3.3 million to 3 million years ago, when average global temperatures were 2 to 3 degrees warmer than today; another is the ending of an older ice age about 130,000 years ago, when sea levels rose by about 5 to 9 meters.

Such periods may serve as analogs to the continent’s future behavior due to anthropogenic global warming. Currently, global average temperatures on Earth are projected to increase by between about 1.5 degrees and 4 degrees Celsius relative to preindustrial times, depending on greenhouse gas emissions to the atmosphere over the next few decades (SN: 10/22/18, p. 18).

“The existing [ice core] record from Iceberg Alley taught us Antarctica lost ice through a threshold reaction,” Weber says. That means that when the continent reached a certain transition point, there was sudden and massive ice loss rather than just a slow, gradual melt.

“We have rather firm evidence that this threshold is passed once the ice sheet loses contact with the underlying ocean floor,” he says, adding that at that point, the shedding of ice becomes self-sustaining, and can go on for centuries. “With mounting evidence of recent ice-mass loss in many sectors of West Antarctica of a similar fashion, we need to be concerned that a new ice-mass loss event is already underway, and there is no stopping it.”