Large Hadron Collider experiment nabs five new particles

Physicists have snagged a bounty of five new particles in one go.

Members of the LHCb experiment, located at the Large Hadron Collider near Geneva, reported the prolific particle procurement in a paper posted online March 14 at arXiv.org. The five particles are each composed of three quarks — a class of particle that makes up larger particles such as protons and neutrons. Each of the new particles comprises two “strange” quarks and one “charm” quark.

The five particles are in various excited, or high-energy, states — giving each particle a different mass and a different arrangement of quarks within. Such particles are expected to exist according to the theory of the strong nuclear force, which bundles quarks together into larger particles.

The five excited particles are named after their low-energy relative, Ωc0 or omega-c-zero. Their rather uninspiring monikers are Ωc(3000)0, Ωc(3050) 0, Ωc(3066) 0, Ωc(3090) 0 and Ωc(3119) 0. Each number in parentheses indicates the mass of the particle in millions of electron volts.

Ancient Romans may have been cozier with Huns than they let on

Nomadic warriors and herders known as the Huns are described in historical accounts as having instigated the fifth century fall of the Roman Empire under Attila’s leadership. But the invaders weren’t always so fierce. Sometimes they shared rather than fought with the Romans, new evidence suggests.

Huns and farmers living around the Roman Empire’s eastern border, where the Danube River runs through present-day Hungary, borrowed ways of life from each other during the fifth century, say archaeologist Susanne Hakenbeck of the University of Cambridge and colleagues. Nomadic Huns on the Roman frontier raised relatively small numbers of animals and grew some crops, while border-zone farmers incorporated more meat into what had been a wheat- and vegetable-heavy diet, the scientists report March 22 in PLOS ONE.
“Our data show that the dietary strategies of the people on both sides of the Roman frontier were not fundamentally different,” Hakenbeck says.

Their findings challenge a traditional view of the Huns as marauders who roamed hundreds of kilometers from Central Asia to Europe. There’s no evidence of major social upheavals or a geographically distinctive group of newcomers at the frontier sites, so at least some Huns may have been homegrown, Hakenbeck suggests. Rapidly forming groups of Hun warriors and herders on horseback could have emerged in southeastern Europe not far from the Roman Empire’s border, perhaps supplemented by nomadic newcomers from farther east near the Black Sea, she proposes.

Still, geographic origins of the Huns are tough to pin down, says archaeologist Ursula Brosseder of the University of Bonn in Germany. The Huns developed as a political movement that picked up members from various ethnic groups as it spread, she explains. Brosseder suspects the “Hun phenomenon” formed on the grasslands of Western Eurasia, a territory that includes regions cited by Hakenbeck. The earliest evidence of Huns in that region dates to about 2,400 years ago.
The new study supports the idea that herding communities adapted flexibly to new environments, sometimes relying only on their livestock and at other times farming to varying extents, Brosseder says. Nomadic herders in Asia probably cultivated millet, a fast-growing cereal that can be used to feed people and horses, Hakenbeck says.
Her group studied skeletons of 234 people buried at five previously excavated sites on or near the Roman frontier. Each site contained evidence of contact with Huns, including bronze artifacts and adult skulls with elongated braincases created by binding the head during childhood. Reasons for this practice are poorly understood. It may have signified affiliation with the Huns or social status of some kind.

Graves at a Roman fort and a nearby cemetery lay on Roman land, about 150 kilometers from the frontier. Another two cemeteries were situated on the banks of the Danube River, directly on the Roman frontier. A final graveyard fell outside Roman territory. It was located about 150 kilometers east of the border.

Measurements of ratios of specific forms of carbon, nitrogen and oxygen in teeth and ribs enabled the scientists to identify what types of plants and how much meat or milk individuals ate during childhood, early adulthood and toward the end of their lives.

Results pointed to considerable consumption of cultivated plants, most likely millet, as well as meat or milk at all five sites. Variations on this general pattern occurred across sites and among individuals at each site, suggesting that groups and individuals rapidly adjusted how much they farmed or herded as circumstances dictated. “This mixing and matching was likely a kind of economic insurance policy in violent and unstable times,” Hakenbeck says.

Hakenbeck’s group also measured another tooth element, strontium, to determine whether individuals at four of the sites had grown up drinking water and eating food in the locales where they were buried. Between 30 and 50 percent of individuals studied at those sites weren’t locals, and the birthplaces of these people remain a mystery, Hakenbeck says.

In many cases, both newcomers and natives to the Roman frontier substantially changed their eating habits over the course of their lives, the researchers find. That fits Hakenbeck’s “mix and match” scenario, in which a fluctuating diet aided survival on the empire’s edge.

Common virus may be celiac disease culprit

A common and usually harmless virus may trigger celiac disease. Infection with the suspected culprit, a reovirus, could cause the immune system to react to gluten as if it was a dangerous pathogen instead of a harmless food protein, an international team of researchers reports April 7 in Science.

In a study in mice, the researchers found that the reovirus, T1L, tricks the immune system into mounting an attack against innocent food molecules. The virus first blocks the immune system’s regulatory response that usually gives non-native substances, like food proteins, the OK, Terence Dermody, a virologist at the University of Pittsburgh, and colleagues found. Then the virus prompts a harmful inflammatory response.
“Viruses have been suspected as potential triggers of autoimmune or food allergy–related diseases for decades,” says Herbert Virgin, a viral immunologist at Washington University School of Medicine in St. Louis. This study provides new data on how a viral infection can change the immune system’s response to food, says Virgin, who wasn’t involved in the study.

Reoviruses aren’t deadly. Almost everyone has been infected with a reovirus, and almost no one gets sick, Dermody says. But if the first exposure to a food with gluten occurs during infection, the virus may turn the immune system against the food protein, the researchers found.

The immune system can either allow foreign substances, such as food proteins, to pass through the body peacefully, or it can go on the attack. In people with celiac disease, gluten is treated like a harmful pathogen; the immune system response damages the lining of the small intestine, causing symptoms like bloody diarrhea.

Celiac disease has been associated with two genetic features. Though 30 to 40 percent of people in the United States have one or both of these features, only 1 percent of the population has been diagnosed with the disease. This disparity suggests that some environmental factor triggers it.

Dermody and colleagues found that the T1L reovirus may be a trigger. In mice engineered to have one of those genetic features, the virus appeared to trick the immune system into seeing gluten as an enemy.
The key interaction occurs in the mesenteric lymph nodes, where gluten meets up with dendritic cells, which are like the “orchestra conductors” of the immune system, Dermody says. These cells dictate whether the immune system ignores a substance or mounts a defense against it.

But the virus engages with the dendritic cells as well, fooling the cells into thinking that gluten, like the virus, is in some way dangerous. And then the immune system attacks the gluten.

Dermody and colleagues also found that the reovirus stimulated activity of an enzyme called tissue transglutaminase. In people with celiac disease, the enzyme makes gluten more able to trigger a harmful immune system response.

Celiac patients also had higher levels of reovirus antibodies than those found in people without the disease.

Dermody doesn’t think that the T1L reovirus is the only virus that can stimulate celiac disease. Future research will analyze the potential of other viruses and also determine whether T1L is a true trigger of the disease in humans. If it is, then a reovirus vaccine could be developed for at-risk children, which could potentially block the development of celiac disease, “and that would be pretty amazing,” Dermody says.

Collision illuminates the mysterious makeup of neutron stars

On astrophysicists’ charts of star stuff, there’s a substance that still merits the label “here be dragons.” That poorly understood material is found inside neutron stars — the collapsed remnants of once-mighty stars — and is now being mapped out, as scientists better characterize the weird matter.

The detection of two colliding neutron stars, announced in October (SN: 11/11/17, p. 6), has accelerated the pace of discovery. Since the event, which scientists spied with gravitational waves and various wavelengths of light, several studies have placed new limits on the sizes and masses possible for such stellar husks and on how squishy or stiff they are.
“The properties of neutron star matter are not very well known,” says physicist Andreas Bauswein of the Heidelberg Institute for Theoretical Studies in Germany. Part of the problem is that the matter inside a neutron star is so dense that a teaspoonful would weigh a billion tons, so the substance can’t be reproduced in any laboratory on Earth.

In the collision, the two neutron stars merged into a single behemoth. This remnant may have immediately collapsed into a black hole. Or it may have formed a bigger, spinning neutron star that, propped up by its own rapid rotation, existed for a few milliseconds — or potentially much longer — before collapsing. The speed of the object’s demise is helping scientists figure out whether neutron stars are made of material that is relatively soft, compressing when squeezed like a pillow, or whether the neutron star stuff is stiff, standing up to pressure. This property, known as the equation of state, determines the radius of a neutron star of a particular mass.

An immediate collapse seems unlikely, two teams of researchers say. Telescopes spotted a bright glow of light after the collision. That glow could only appear if there were a delay before the merged neutron star collapsed into a black hole, says physicist David Radice of Princeton University because when the remnant collapses, “all the material around falls inside of the black hole immediately.” Instead, the neutron star stuck around for at least several milliseconds, the scientists propose.

Simulations indicate that if neutron stars are soft, they will collapse more quickly because they will be smaller than stiff neutron stars of the same mass. So the inferred delay allows Radice and colleagues to rule out theories that predict neutron stars are extremely squishy, the researchers report in a paper published November 13 at arXiv.org.
Using similar logic, Bauswein and colleagues rule out some of the smallest sizes that neutron stars of a particular mass might be. For example, a neutron star 60 percent more massive than the sun can’t have a radius smaller than 10.7 kilometers, they determine. These results appear in a paper published November 29 in the Astrophysical Journal Letters.

Other researchers set a limit on the maximum mass a neutron star can have. Above a certain heft, neutron stars can no longer support their own weight and collapse into a black hole. If this maximum possible mass were particularly large, theories predict that the newly formed behemoth neutron star would have lasted hours or days before collapsing. But, in a third study, two physicists determined that the collapse came much more quickly than that, on the scale of milliseconds rather than hours. A long-lasting, spinning neutron star would dissipate its rotational energy into the material ejected from the collision, making the stream of glowing matter more energetic than what was seen, physicists Ben Margalit and Brian Metzger of Columbia University report. In a paper published November 21 in the Astrophysical Journal Letters, the pair concludes that the maximum possible mass is smaller than about 2.2 times that of the sun.

“We didn’t have many constraints on that prior to this discovery,” Metzger says. The result also rules out some of the stiffer equations of state because stiffer matter tends to support larger masses without collapsing.

Some theories predict that bizarre forms of matter are created deep inside neutron stars. Neutron stars might contain a sea of free-floating quarks — particles that are normally confined within larger particles like protons or neutrons. Other physicists suggest that neutron stars may contain hyperons, particles made with heavier quarks known as strange quarks, not found in normal matter. Such unusual matter would tend to make neutron stars softer, so pinning down the equation of state with additional neutron star crashes could eventually resolve whether these exotic beasts of physics indeed lurk in this unexplored territory.

In a first, Galileo’s gravity experiment is re-created in space

Galileo’s most famous experiment has taken a trip to outer space. The result? Einstein was right yet again. The experiment confirms a tenet of Einstein’s theory of gravity with greater precision than ever before.

According to science lore, Galileo dropped two balls from the Leaning Tower of Pisa to show that they fell at the same rate no matter their composition. Although it seems unlikely that Galileo actually carried out this experiment, scientists have performed a similar, but much more sensitive experiment in a satellite orbiting Earth. Two hollow cylinders within the satellite fell at the same rate over 120 orbits, or about eight days’ worth of free-fall time, researchers with the MICROSCOPE experiment report December 4 in Physical Review Letters. The cylinders’ accelerations match within two-trillionths of a percent.

The result confirms a foundation of Einstein’s general theory of relativity known as the equivalence principle. That principle states that an object’s inertial mass, which sets the amount of force needed to accelerate it, is equal to its gravitational mass, which determines how the object responds to a gravitational field. As a result, items fall at the same rate — at least in a vacuum, where air resistance is eliminated — even if they have different masses or are made of different materials.

The result is “fantastic,” says physicist Stephan Schlamminger of OTH Regensburg in Germany who was not involved with the research. “It’s just great to have a more precise measurement of the equivalence principle because it’s one of the most fundamental tenets of gravity.”
In the satellite, which is still collecting additional data, a hollow cylinder, made of platinum alloy, is centered inside a hollow, titanium-alloy cylinder. According to standard physics, gravity should cause the cylinders to fall at the same rate, despite their different masses and materials. A violation of the equivalence principle, however, might make one fall slightly faster than the other.

As the two objects fall in their orbit around Earth, the satellite uses electrical forces to keep the pair aligned. If the equivalence principle didn’t hold, adjustments needed to keep the cylinders in line would vary with a regular frequency, tied to the rate at which the satellite orbits and rotates. “If we see any difference in the acceleration it would be a signature of violation” of the equivalence principle, says MICROSCOPE researcher Manuel Rodrigues of the French aerospace lab ONERA in Palaiseau. But no hint of such a signal was found.

With about 10 times the precision of previous tests, the result is “very impressive,” says physicist Jens Gundlach of the University of Washington in Seattle. But, he notes, “the results are still not as precise as what I think they can get out of a satellite measurement.”

Performing the experiment in space eliminates certain pitfalls of modern-day land-based equivalence principle tests, such as groundwater flow altering the mass of surrounding terrain. But temperature changes in the satellite limited how well the scientists could confirm the equivalence principle, as these variations can cause parts of the apparatus to expand or contract.

MICROSCOPE’s ultimate goal is to beat other measurements by a factor of 100, comparing the cylinders’ accelerations to see whether they match within a tenth of a trillionth of a percent. With additional data yet to be analyzed, the scientists may still reach that mark.

Confirmation of the equivalence principle doesn’t mean that all is hunky-dory in gravitational physics. Scientists still don’t know how to combine general relativity with quantum mechanics, the physics of the very small. “The two theories seems to be very different, and people would like to merge these two theories,” Rodrigues says. But some attempts to do that predict violations of the equivalence principle on a level that’s not yet detectable. That’s why scientists think the equivalence principle is worth testing to ever more precision — even if it means shipping their experiments off to space.

These petunias launch seeds that spin 1,660 times a second

Nature may have a few things to teach tennis players about backspin.

The hairyflower wild petunia (Ruellia ciliatiflora) shoots seeds that spin up to 1,660 times per second, which helps them fly farther, researchers report March 7 in Journal of the Royal Society Interface. These seeds have the fastest known rotations of any plant or animal, the authors say. Plants that disperse seeds a greater distance are likely to be more successful in reproducing and spreading.
Glue that holds the flower’s podlike fruit together breaks down on contact with water, allowing the fruit to split explosively, launching millimeter-sized seeds. Little hooks inside the pod help fling these flattened discs at speeds of around 10 meters per second.

Using high-speed cameras that record 20,000 frames per second, the researchers analyzed the seeds’ flight. “Our first thought was: ‘Why doesn’t this throw like a Frisbee?’” says Dwight Whitaker, an applied physicist at Pomona College, in Claremont, Calif. Instead of spinning horizontally, most seeds spin counterclockwise vertically, like a bicycle wheel in reverse.

Whitaker and his colleagues calculated that backspin should help stabilize the seeds as they travel through the air, reducing drag. Experiments backed this up: Stable “spinners” had less drag on average than “floppers,” seeds that tumbled as they fell. Simulations predict that lower drag lets spinners travel 6.7 meters on average — more than twice as far on average as floppers.

STEVE the aurora makes its debut in mauve

Meet STEVE, a newfound type of aurora that drapes the sky with a mauve ribbon and bedazzling green bling.

This feature of the northern lights, recently photographed and named by citizen scientists in Canada, now has a scientific explanation. The streak of color, which appears to the south of the main aurora, may be a visible version of a typically invisible process involving drifting charged particles, or ions, physicist Elizabeth MacDonald and colleagues report March 14 in Science Advances.
Measurements from ground-based cameras and a satellite that passed when STEVE was in full swing show that the luminous band was associated with a strong flow of ions in the upper atmosphere, MacDonald, of NASA’s Goddard Space Flight Center in Greenbelt, Md., and colleagues conclude. But the researchers can’t yet say how a glow arises from this flow.

Part of a project called Aurorasaurus (SN Online: 4/3/15), the citizen scientists initially gave the phenomenon its moniker before its association with ion drift was known. MacDonald and colleagues kept the name, but gave it a backronym: “Strong Thermal Emission Velocity Enhancement.”

We’ll just stick with STEVE.